

Night-time 36-band MODIS data for Mapping global urban population, GDP and CO₂ emissions

Jan-Peter Muller, Chris Doll University College London

Chris Elvidge
NOAA/NGDC

Overview

- Scientific Justification
- Objectives
- DMSP-OLS 1km global composite
- Ancillary data-sets used for analysis
- Relationship of population to lit area
 - By continent
 - By country
- Relationship of GDP to lit area
- Relationship of CO₂ emission to lit area
- Assessing the potential of MODIS using AVIRIS
- Post-launch product from MODIS Next Steps

Scientific Justification

- Urbanisation is one of the principal driving forces of global change. In 1945, 30% of global population lived in urban areas. By 1995, 45% and by 2025 extrapolated to be 60%
- Urban land cover class difficult to detect from daytime visible/NIR imagery due to non-linear mixtures of vegetation and buildings.
- Census data not collected in an uniform manner worldwide and only refers to residential areas not industrial areas where greenhouse gas emission may be much greater
- Night-time lights has been hypothesized to reflect socioeconomic status and Carbon Dioxide emissions
- MODIS night product could be used initially to supplement land cover but eventually could be a rich source of socioeconomic information which cannot be collected in any other way

Objectives

- assess potential of night-light images to derive global information
 - urban land cover
 - socio-economic statistics (primarily population and GDP)
 - CO₂ emission
- use ancillary information on city populations to derive relationship with lit area
 - By continent
 - By country
- Assess potential of MODIS to provide <u>annual</u> estimates of CO2 emission and global urban population
 - using simulated radiance images from AVIRIS
 - Using MCST/SBRC calibration information from MODIS

DMSP-OLS 1km global composite

- 1km maps of 1994-95 DMSP-OLS visible/NIR data acquired at night produced by C. Elvidge at NOAA-NGDC
- Digital DMSP-OLS data was cloud-screened using thermal IR channel and remapped to Plate Carée and Interrupted Goode Homosoline
- Maps produced in two different outputs:
 - Frequency of occurrence over the compositing time period as a percentage of the whole time period
 - Mean brightness over the time period when observation was cloud-free
- Global maps were then edited to exclude biomass burning, gas flare burn-offs and non-land data to create "city lights"
- Occurrence frequency employed in this analysis as mean value was less reliable
- Resultant map polygonised using a threshold of 7% (Elvidge et al., 1997)

City "lights at night" (DMSP-OLS): Global lit area map showing continental region boundaries

North American Coverage, South American Coverage, Asian Coverage, European Coverage, African Coverage, Oceania Coverage

Ancillary data-sets used for analysis

- University of Iowa Center for Global & Regional Environmental Research (CGRER) of 49,935 urban centers worldwide (mostly pre-1993) of latitude, longitude and population
- Philip's Geographical Digest (1998) on 2,453 urban agglomerations of capital cities and those with >100,000 used to replace CGRER data (mostly 1994-95)
- World Resources Institute (WRI) country-level data on
 - Population (1995)
 - Urban Population (1995)
 - Number of cities > 750,000 inhabitants (1995)
 - Gross Domestic Product Purchasing Power Parity GDP-PPP (1993)
 - CO₂ emissions-Total, Liquid[oil], solids [coal], gas, cement (1992)

Map showing global city population data from CGRER and Philip's Geographical Digest

Population Information from remote sensing

 Nordbeck (1965) identified allometric relationship between area, A and population, P, of settlements based on cartographic data

$$A = aP^b \Rightarrow Log A = b(Log P) + Log a$$

- Tobler (1969) provided satellite confirmation with photographs from the Gemini missions
- Welch (1985) & Lo (1986) showed use of DMSP-OLS photographic products for urban area mapping
- Renewed interest in DMSP-OLS data since digital archival in 1994. Digital processing facilitates more accurate areal assessment

Example of DMSP-OLS 1km 1994-5 composite frequency image of New York area

Example of polygonised areas with cities > 100,000 population shown as points within polygon. Note that a lit area may contain multiple points

Relationship of lit area from "lights at night" (DMSP-OLS) with Total CO₂ emissions

Note: strong allometric relationship of Total CO₂ emissions to lit area.

Total CO₂ Emission vs. lit area (by country)

Assessing the potential of MODIS from night-time lights using AVIRIS

- AVIRIS data collected over Las Vegas, NV using low-altitude flight with IFoV=5m (C. Elvidge, PI) in 1997
- AVIRIS data converted to radiance using supplied calibration data
- Integration over MODIS, MISR & OLS spectral band responsivities at 5m
- Integration over 250m given limited swath width of AVIRIS

Comparison of OLS spectral responsivity with most sensitive MODIS Bands (4 & 14)

Example of AVIRIS at 5m integrated over 15 MODIS bands (1-4, 8-19)

W/cm²/um/sr

Example of AVIRIS spectral profile and Band 4 location

Emission peak for lights at 536 nm of radiance 10^-8 W/cm^2/um/sr

Comparison with OLS 2.7km radiance image for 1994/5

Quantitative assessment of MODIS minimum detectable radiance

- Minimum detectable radiance defined as Maximum radiance/dynamic range (=4096 for MODIS) taken from MCST spreadsheet (June 1997)
- OLS minimum radiance (Elvidge et al., RSE (in press) is around 5.412*10⁻⁷ W/cm-sr-µm
- MODIS bands 1-4, 8-14 integrated in radiance and spatially integrated up to 250m (would be 16 times smaller for 1km pixels) would yield minimum detectable radiances of 3.163 *10⁻⁷ W/cm-sr-µm
- Appears that MODIS will be (just) able to detect night-time lights at higher spatial resolution, with better radiometric calibration and better cloud screening than OLS

Post-launch product from MODIS -Next Steps

- Propose a new "post-launch" product for URBAN AREA, GDP and CO₂ emission studies derived from MODIS based on
 - 1km thermal day-night contrast (of direct interest to studies of the net radiation budget changes caused by cities)
 - Bands 1-4, 8-14 (250m-1000m) night-time visible "city lights" would be converted to radiance and summed to produce
 - » Maps of lower population densities
 - » Studies of land use conversion into urban areas with much greater reliability than using existing mixed pixel land cover
- Resultant product could also be used to help interpret MOPITT
 & HRDLS CO measurements
- Request that MODIS project tests concept during the commissioning phase of the mission and if results are encouraging to invest in additional data acquisition (Bands 1-4, 8-14 globally at night)